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9.10 Taylor and Maclaurin Series

Find a Taylor or Maclaurin series for a function.
Find a binomial series.
Use a basic list of Taylor series to find other Taylor series.

Taylor Series and Maclaurin Series
In Section 9.9, you derived power series for several functions using geometric series
with term-by-term differentiation or integration. In this section, you will study a 
general procedure for deriving the power series for a function that has derivatives of all
orders. The next theorem gives the form that every convergent power series must take.

Proof Consider a power series that has a radius of convergence Then,
by Theorem 9.21, you know that the derivative of exists for and by
successive differentiation you obtain the following.

Evaluating each of these derivatives at yields

and, in general, By solving for you find that the coefficients of the
power series representation of are

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Notice that the coefficients of the power series in Theorem 9.22 are precisely the
coefficients of the Taylor polynomials for at as defined in Section 9.7. For this
reason, the series is called the Taylor series for at c.f �x�

cf�x�

an �
f �n��c�

n!
.

f�x�
an,f �n��c� � n!an.

f �3��c� � 3!a3

f �2��c� � 2!a2

f �1��c� � 1!a1

f �0��c� � 0!a0

x � c

f �n��x� � n!an � �n � 1�!an�1�x � c� � .  .  .
 �

f �3��x� � 3!a3 � 4!a4�x � c� � .  .  .
f �2��x� � 2a2 � 3!a3�x � c� � 4 � 3a4�x � c�2 � .  .  .
f �1��x� � a1 � 2a2�x � c� � 3a3�x � c�2 � 4a4�x � c�3 � .  .  .
f �0��x� � a0 � a1�x � c� � a2�x � c�2 � a3�x � c�3 � a4�x � c�4 � .  .  .

�x � c� < R,fnth
R.� an�x � c�n

THEOREM 9.22 The Form of a Convergent Power Series

If is represented by a power series for all in an open 
interval containing then 

and

f�x� � f�c� � f��c��x � c� �
f��c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � .  .  . .

an �
f �n��c�

n!

c,I
xf �x� � � an�x � c�nfREMARK Be sure you

understand Theorem 9.22. The
theorem says that if a power
series converges to then the
series must be a Taylor series. The
theorem does not say that every
series formed with the Taylor
coefficients will
converge to f �x�.

an � f �n��c��n!

f �x�,

COLIN MACLAURIN (1698–1746)

The development of power series
to represent functions is credited
to the combined work of many
seventeenth- and eighteenth-
century mathematicians. Gregory,
Newton, John and James Bernoulli,
Leibniz, Euler, Lagrange,Wallis, and
Fourier all contributed to this
work. However, the two names
that are most commonly associated
with power series are Brook
Taylor (1685–1731) and Colin
Maclaurin.
See LarsonCalculus.com to read
more of this biography.

Bettmann/Corbis
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When you know the pattern for the coefficients of the Taylor polynomials for a
function, you can extend the pattern easily to form the corresponding Taylor series. For
instance, in Example 4 in Section 9.7, you found the fourth Taylor polynomial for 
centered at 1, to be

From this pattern, you can obtain the Taylor series for centered at 

Forming a Power Series

Use the function

to form the Maclaurin series

and determine the interval of convergence.

Solution Successive differentiation of yields

and so on. The pattern repeats after the third derivative. So, the power series is as
follows.

By the Ratio Test, you can conclude that this series converges for all x.

 � x �
x3

3!
�

x5

5!
�

x7

7!
� .  .  .

�
��1�

7!
x7 � .  .  .

�
�

n�0

��1�n x2n�1

�2n � 1�! � 0 � �1�x �
0
2!

x2 �
��1�

3!
x3 �

0
4!

x4 �
1
5!

x5 �
0
6!

x6

 �
�

n�0
 
f �n��0�

n!
 xn � f�0� � f��0�x �

f��0�
2!

x2 �
f �3��0�

3!
x3 �

f �4��0�
4!

x4 � .  .  .

 f �5��0� � cos 0 � 1 f �5��x� � cos x

 f �4��0� � sin 0 � 0 f �4��x� � sin x

 f �3��0� � �cos 0 � �1 f �3��x� � �cos x

 f� �0� � �sin 0 � 0 f� �x� � �sin x

 f��0� � cos 0 � 1 f��x� � cos x

 f�0� � sin 0 � 0 f�x� � sin x

f�x�

�
�

n�0
 
f �n��0�

n!
 xn � f�0� � f��0�x �

f��0�
2!

 x2 �
f �3��0�

3!
 x3 �

f �4��0�
4!

 x4 � .  .  .

 f�x� � sin x

�x � 1� �
1
2

�x � 1�2 � .  .  . �
��1�n�1

n
�x � 1�n � .  .  . .

c � 1,ln x

P4�x� � �x � 1� �
1
2

�x � 1�2 �
1
3

�x � 1�3 �
1
4

�x � 1�4.

ln x,

9.10 Taylor and Maclaurin Series 665

Definition of Taylor and Maclaurin Series

If a function has derivatives of all orders at then the series

is called the Taylor series for at Moreover, if then the series is 
the Maclaurin series for f.

c � 0,c.f�x�

�
�

n�0
 
f �n��c�

n!
�x � c�n � f�c� � f��c��x � c� � .  .  . �

f �n��c�
n!

�x � c�n � .  .  .

x � c,f
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Notice that in Example 1, you cannot conclude that the power series converges to
for all You can simply conclude that the power series converges to some

function, but you are not sure what function it is. This is a subtle, but important, point
in dealing with Taylor or Maclaurin series. To persuade yourself that the series

might converge to a function other than remember that the derivatives are being 
evaluated at a single point. It can easily happen that another function will agree with the
values of when and disagree at other values. For instance, the power
series (centered at 0) for the function shown in Figure 9.23 is the same series as in
Example 1. You know that the series converges for all and yet it obviously cannot
converge to both and for all 

Let have derivatives of all orders in an open interval centered at The Taylor
series for may fail to converge for some in Or, even when it is convergent, it may
fail to have as its sum. Nevertheless, Theorem 9.19 tells us that for each 

where

Note that in this remainder formula, the particular value of that makes the
remainder formula true depends on the values of and If then the next 
theorem tells us that the Taylor series for actually converges to for all in 

Proof For a Taylor series, the partial sum coincides with the Taylor 
polynomial. That is, Moreover, because

it follows that

So, for a given the Taylor series (the sequence of partial sums) converges to if
and only if as 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Stated another way, Theorem 9.23 says that a power series formed with Taylor 
coefficients converges to the function from which it was derived at 
precisely those values for which the remainder approaches 0 as n →�.

an � f �n��c��n!

n →�.Rn�x� → 0
f�x�x,

 � f�x� � lim
n→�

 Rn�x�.

 � lim
n→�

 	 f�x� � Rn�x�


 lim
n→�

 Sn�x� � lim
n→�

 Pn�x�

Pn�x� � f�x� � Rn�x�

Sn�x� � Pn�x�.
nthnth

I.xf �x�f
Rn → 0,n.x

z

Rn�x� �
f �n�1��z�
�n � 1�! �x � c�n�1.

f �x� � f �c� � f��c��x � c� �
f ��c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � Rn�x�

n,f �x�
I.xf

c.If
x.sin xf�x�

x,
f

x-x � cf �n��x�

f,

f�c� � f��c��x � c� �
f� �c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � .  .  .

x.sin x
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THEOREM 9.23 Convergence of Taylor Series

If for all in the interval then the Taylor series for converges

and equals 

f �x� � �
�

n�0

f �n��c�
n!

�x � c�n.

f �x�,

fI,xlim
n→�

 Rn � 0

ππ
2

f (x) = sin x, ⎪ ⎪ ≤x

1, x >

−1, x < −
2

x

y

−

1

−1

2
π

2
π

π

π
2

Figure 9.23
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In Example 1, you derived the power series from the sine function and you also
concluded that the series converges to some function on the entire real number line. In
Example 2, you will see that the series actually converges to sin The key observation
is that although the value of is not known, it is possible to obtain an upper bound for

A Convergent Maclaurin Series

Show that the Maclaurin series for

converges to sin for all 

Solution Using the result in Example 1, you need to show that

is true for all Because

or

you know that for every real number Therefore, for any fixed you
can apply Taylor’s Theorem (Theorem 9.19) to conclude that

From the discussion in Section 9.1 regarding the relative rates of convergence of
exponential and factorial sequences, it follows that for a fixed 

Finally, by the Squeeze Theorem, it follows that for all as So, by
Theorem 9.23, the Maclaurin series for sin converges to sin for all 

Figure 9.24 visually illustrates the convergence of the Maclaurin series for by
comparing the graphs of the Maclaurin polynomials and with
the graph of the sine function. Notice that as the degree of the polynomial increases, its
graph more closely resembles that of the sine function.

P7�x�P5�x�,P3�x�,P1�x�,
sin x

x.xx
n →�.Rn�x� → 0x,

lim
n→�

 �x�n�1

�n � 1�! � 0.

x

0 	 �Rn�x�� � � f �n�1��z�
�n � 1�! xn�1� 	 �x�n�1

�n � 1�!.

x,z.� f �n�1��z�� 	 1

f �n�1��x� � ±cos x

f �n�1��x� � ±sin x

x.

sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� .  .  . �

��1�n x2n�1

�2n � 1�! � .  .  .

x.x

f�x� � sin x

� f �n�1��z��.
z

x.
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As increases, the graph of more closely resembles the sine function.
Figure 9.24

Pnn
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The guidelines for finding a Taylor series for at are summarized below.

The direct determination of Taylor or Maclaurin coefficients using successive
differentiation can be difficult, and the next example illustrates a shortcut for finding
the coefficients indirectly—using the coefficients of a known Taylor or Maclaurin
series.

Maclaurin Series for a Composite Function

Find the Maclaurin series for

Solution To find the coefficients for this Maclaurin series directly, you must
calculate successive derivatives of By calculating just the first two,

and

you can see that this task would be quite cumbersome. Fortunately, there is an
alternative. First, consider the Maclaurin series for sin found in Example 1.

Now, because you can substitute for in the series for to obtain

Be sure to understand the point illustrated in Example 3. Because direct
computation of Taylor or Maclaurin coefficients can be tedious, the most practical way
to find a Taylor or Maclaurin series is to develop power series for a basic list of elementary
functions. From this list, you can determine power series for other functions by the
operations of addition, subtraction, multiplication, division, differentiation, integration,
and composition with known power series.

 � x2 �
x6

3!
�

x10

5!
�

x14

7!
� .  .  . .

 sin x2 � g�x2�

sin xxx2sin x2 � g�x2�,

 � x �
x3

3!
�

x5

5!
�

x7

7!
� .  .  .

 g�x� � sin x

x

f��x� � �4x2 sin x2 � 2 cos x2

f��x� � 2x cos x2

f�x� � sin x2.

f�x� � sin x2.

cf �x�
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GUIDELINES FOR FINDING A TAYLOR SERIES

1. Differentiate several times and evaluate each derivative at 

Try to recognize a pattern in these numbers.

2. Use the sequence developed in the first step to form the Taylor coefficients
and determine the interval of convergence for the resulting

power series

3. Within this interval of convergence, determine whether the series converges
to f�x�.

f�c� � f��c��x � c� �
f� �c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � .  .  . .

an � f �n��c��n!,

f �c�, f��c�, f� �c�, f����c�, .  .  . , f �n��c�, .  .  .

c.f�x�

REMARK When you have
difficulty recognizing a pattern,
remember that you can use
Theorem 9.22 to find the Taylor
series. Also, you can try using
the coefficients of a known
Taylor or Maclaurin series,
as shown in Example 3.

9781285057095_0910.qxp  9/18/12  8:36 AM  Page 668

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Binomial Series
Before presenting the basic list for elementary functions, you will develop one more
series—for a function of the form This produces the binomial series.

Binomial Series

Find the Maclaurin series for and determine its radius of convergence.
Assume that is not a positive integer and 

Solution By successive differentiation, you have

which produces the series

Because you can apply the Ratio Test to conclude that the radius of
convergence is So, the series converges to some function in the interval

Note that Example 4 shows that the Taylor series for converges to some
function in the interval However, the example does not show that the series
actually converges to To do this, you could show that the remainder 
converges to 0, as illustrated in Example 2. You now have enough information to find a
binomial series for a function, as shown in the next example.

Finding a Binomial Series

Find the power series for 

Solution Using the binomial series

let and write

which converges for �1 	 x 	 1.

�1 � x�1�3 � 1 �
x
3

�
2x2

322!
�  

2 � 5x3

333!
�

2 � 5 � 8x4

344!
� .  .  .

k �
1
3

�1 � x�k � 1 � kx �
k�k � 1�x2

2!
�

k�k � 1��k � 2�x3

3!
� .  .  .

f �x� � 3�1 � x.

Rn�x��1 � x�k.
��1, 1�.

�1 � x�k

��1, 1�.
R � 1.

an�1�an → 1,

1 � kx �
k�k � 1�x2

2
� .  .  . �

k�k � 1� .  .  . �k � n � 1�xn

n!
� .  .  . .

 f �n��0� � k�k � 1� .  .  . �k � n � 1� f �n��x� � k .  .  . �k � n � 1��1 � x�k�n

 � �
 f����0� � k�k � 1��k � 2� f����x� � k�k � 1��k � 2��1 � x�k�3

 f � �0� � k�k � 1� f��x� � k�k � 1��1 � x�k�2

 f� �0� � k f��x� � k�1 � x�k�1

 f �0� � 1 f�x� � �1 � x�k

k 
 0.k
f �x� � �1 � x�k

f�x� � �1 � x�k.
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TECHNOLOGY Use a graphing utility to confirm the result in Example 5.
When you graph the functions

and

in the same viewing window, you should obtain the result shown in Figure 9.25.

P4�x� � 1 �
x
3

�
x2

9
�

5x3

81
�

10x4

243

 f �x� � �1 � x�1�3

2−2

−1

2

P4

f(x) =     1 + x3

Figure 9.25
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Deriving Taylor Series from a Basic List
The list below provides the power series for several elementary functions with the 
corresponding intervals of convergence.

Note that the binomial series is valid for noninteger values of Also, when is a 
positive integer, the binomial series reduces to a simple binomial expansion.

Deriving a Power Series from a Basic List

Find the power series for

Solution Using the power series

you can replace by

to obtain the series

This series converges for all in the domain of —that is, for x � 0.cos�xx

cos�x � 1 �
x
2!

�
x2

4!
�

x3

6!
�

x4

8!
� .  .  . .

�x

x

cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
�

x8

8!
� .  .  .

f �x� � cos�x.

kk.
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POWER SERIES FOR ELEMENTARY FUNCTIONS

Interval of
Function Convergence

* The convergence at depends on the value of k.x � ±1

�1 < x < 1* �1 � x�k � 1 � kx �
k�k � 1�x2

2!
�

k�k � 1��k � 2�x3

3!
�

k�k � 1��k � 2��k � 3�x4

4!
� .  .  .

�1 	 x 	 1arcsin x � x �
x3

2 � 3
�

1 � 3x5

2 � 4 � 5
�

1 � 3 � 5x7

2 � 4 � 6 � 7
� .  .  . �

�2n�!x2n�1

�2nn!�2�2n � 1� � .  .  .

�1 	 x 	 1arctan x � x �
x3

3
�

x5

5
�

x7

7
�

x9

9
� .  .  . �

��1�n x2n�1

2n � 1
� .  .  .

�� < x < �cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
�

x8

8!
� .  .  . �

��1�n x2n

�2n�! � .  .  .

�� < x < �sin x � x �
x3

3!
�

x5

5!
�

x7

7!
�

x9

9!
� .  .  . �

��1�n x2n�1

�2n � 1�! � .  .  .

�� < x < �ex � 1 � x �
x2

2!
�

x3

3!
�

x4

4!
�

x5

5!
� .  .  . �

xn

n!
� .  .  .

0 < x 	 2ln x � �x � 1� �
�x � 1�2

2
�

�x � 1�3

3
�

�x � 1�4

4
� .  .  . �

��1�n�1�x � 1�n

n
� .  .  .

�1 < x < 1
1

1 � x
� 1 � x � x2 � x3 � x4 � x5 � .  .  . � ��1�n xn � .  .  .

0 < x < 2
1
x

� 1 � �x � 1� � �x � 1�2 � �x � 1�3 � �x � 1�4 � .  .  . � ��1�n�x � 1�n � .  .  .
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Power series can be multiplied and divided like polynomials. After finding the first
few terms of the product (or quotient), you may be able to recognize a pattern.

Multiplication of Power Series

Find the first three nonzero terms in the Maclaurin series 

Solution Using the Maclaurin series for and in the table, you have

Multiply these expressions and collect like terms as you would in multiplying 
polynomials.

So,

Division of Power Series

Find the first three nonzero terms in the Maclaurin series 

Solution Using the Maclaurin series for and in the table, you have

Divide using long division.

So, tan x � x �
1
3 x3 �

2
15 x5 � .  .  . .

           
2

15
x5 � .  .  .

       
1
3

x3 �  
1
6

x5 � .  .  .

       
1
3

x3 �  
1

30
x5 � .  .  .

    x �
1
2

x3 �  
1

24
x5 � .  .  .

1 �
1
2

x2 �
1

24
x4 � .  .  .�    x �

1
6

x3 �
1

120
x5 � .  .  .

   x �
1
3

x3 �  
2

15
x5 � .  .  .

tan x �
sin x
cos x

�

x �
x3

3!
�

x5

5!
� .  .  .

1 �
x2

2!
�

x4

4!
� .  .  .

.

cos xsin x

tan x.

ex arctan x � x � x2 �
1
6 x3 � .  .  . .

 x �  x2 �  
1
6

x3 �  
1
6

x4 �
3

40
x5 � .  .  .

                �  
1
5

x5 � .  .  .

       �  
1
3

x3 �  
1
3

x4 �  
1
6

x5 � .  .  .

 x �  x2 �  
1
2

x3 �  
1
6

x4 �  
1
24

x5 � .  .  .

 x       �  
1
3

x3      �  
1
5

x5 � .  .  .

1 �  x �
1
2

x2 �  
1
6

x3 �
1

24
x4 � .  .  .

ex arctan x � 1 �
x
1!

�
x2

2!
�

x3

3!
�

x4

4!
� .  .  .�x �

x3

3
�

x5

5
�  .  .  .�.

arctan xex

ex arctan x.
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A Power Series for sin2 x

Find the power series for

Solution Consider rewriting as

Now, use the series for cos 

So, the series for is

This series converges for 

As mentioned in the preceding section, power series can be used to obtain tables of
values of transcendental functions. They are also useful for estimating the values of 
definite integrals for which antiderivatives cannot be found. The next example 
demonstrates this use.

Power Series Approximation of a Definite Integral

See LarsonCalculus.com for an interactive version of this type of example.

Use a power series to approximate

with an error of less than 0.01.

Solution Replacing with in the series for produces the following.

Summing the first four terms, you have

which, by the Alternating Series Test, has an error of less than 1
216 � 0.005.

�1

0
 e�x2

 dx � 0.74

 � 1 �
1
3

�
1

10
�

1
42

�
1

216
� .  .  .

 �1

0
 e�x2

 dx � �x �
x3

3
�

x5

5 � 2!
�

x7

7 � 3!
�

x9

9 � 4!
� .  .  .�

1

0

 e�x2
� 1 � x2 �

x4

2!
�

x6

3!
�

x8

4!
� .  .  .

ex�x2x

�1

0
 e�x2

 dx

�� < x < �.

sin2 x �
2
2!

x2 �
23

4!
x4 �

25

6!
x6 �

27

8!
x8 � .  .  . .

f �x� � sin2 x

 
1
2

�
1
2

 cos 2x �
1
2

�
1
2

�
2
2!

x2 �
23

4!
x4 �

25

6!
x6 �

27

8!
 x8 � .  .  .

 �
1
2

 cos 2x � �
1
2

�
2
2!

x2 �
23

4!
x4 �

25

6!
x6 �

27

8!
x8 � .  .  .

 cos 2x � 1 �
22

2!
x2 �

24

4!
x4 �

26

6!
x6 �

28

8!
x8 � .  .  .

 cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
�

x8

8!
� .  .  .

x.

sin2 x �
1 � cos 2x

2
�

1
2

�
1
2

 cos 2x.

sin2 x

 f�x� � sin2 x.
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9.10 Taylor and Maclaurin Series 673

9.10 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding a Taylor Series In Exercises 1–12, use the 
definition of Taylor series to find the Taylor series, centered at 
for the function.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11. (first three nonzero terms)

12. (first three nonzero terms)

Proof In Exercises 13–16, prove that the Maclaurin series
for the function converges to the function for all 

13. 14.

15. 16.

Using a Binomial Series In Exercises 17–26, use the 
binomial series to find the Maclaurin series for the function.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Finding a Maclaurin Series In Exercises 27–40, find the
Maclaurin series for the function. Use the table of power series
for elementary functions on page 670.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37.

38.

39.

40.

Hint: Integrate the series for 

Finding a Maclaurin Series In Exercises 41–44, find the
Maclaurin series for the function. (See Examples 7 and 8.)

41. 42.

43. 44.

Verifying a Formula In Exercises 45 and 46, use a power
series and the fact that to verify the formula.

45.

46.

Finding Terms of a Maclaurin Series In Exercises 47–52,
find the first four nonzero terms of the Maclaurin series for the
function by multiplying or dividing the appropriate power
series. Use the table of power series for elementary functions on
page 670. Use a graphing utility to graph the function and its
corresponding polynomial approximation.

47. 48.

49. 50.

51. 52.

Finding a Maclaurin Series In Exercises 53 and 54, find a
Maclaurin series for 

53.

54.

Verifying a Sum In Exercises 55–58, verify the sum. Then
use a graphing utility to approximate the sum with an error of
less than 0.0001.

55.

56.

57.

58.

Finding a Limit In Exercises 59–62, use the series 
representation of the function to find (if it exists).

59. 60.

61. 62. f �x� �
ln�x � 1�

x
f �x� �

ex � 1
x

f �x� �
sin x

x
f �x� �

1 � cos x
x

lim
x→0

  f �x� f

�
�

n�1
 ��1�n�1  1

n!� �
e � 1

e

�
�

n�0
 
2n

n!
� e2

�
�

n�0
 ��1�n � 1

�2n � 1�!� � sin 1

�
�

n�1
 ��1�n�1 

1
n

� ln 2

f �x� � �x

0
 �1 � t3 dt

f �x� � �x

0
 �e�t 2

� 1� dt

f �x�.

f �x� �
ex

1 � x
g�x� �

sin x
1 � x

f �x� � ex ln�1 � x�h�x� � cos x ln�1 � x�
g�x� � ex cos xf �x� � ex sin x

g�x� �
1
2

�eix � e�ix� � cos x

g�x� �
1
2i

�eix � e�ix� � sin x

i 2 � �1

f �x� � �arcsin x ,
  x

1,
    

x 
 0

x � 0
g�x� � �sin x ,

x

1,
    

x 
 0

x � 0

h�x� � x cos xf �x� � x sin x

1
�x2 � 1

.�
f �x� � sinh�1 x � ln�x � �x2 � 1 �
f �x� � cos2 x

f �x� � e x � e�x � 2 cosh x

f �x� �
1
2�ex � e�x� � sinh x

g�x� � 2 sin x3

f �x� � cos x3�2

f �x� � cos �xf �x� � cos 4x

f �x� � sin �xg�x� � sin 3x

f �x� � ln�1 � x2�f �x� � ln�1 � x�
g�x� � e�3xf �x� � ex2�2

f �x� � �1 � x3f �x� � �1 � x2

f �x� � 4�1 � xf �x� � �1 � x

f �x� �
1

�2 � x�3f �x� �
1

�4 � x2

f �x� �
1

�1 � x2
f �x� �

1
�1 � x

f �x� �
1

�1 � x�4f �x� �
1

�1 � x�2

f �x� � cosh xf �x� � sinh x

f �x� � e�2xf �x� � cos x

x.

c � 0f �x� � tan x,

c � 0f �x� � sec x,

c � 0f �x� � ln�x2 � 1�,
c � 0f �x� � sin 3x,

c � 1f �x� � ex,c � 1f �x� � ln x,

c � 2f �x� �
1

1 � x
,c � 1f �x� �

1
x
,

c �
�

4
f �x� � sin x,c �

�

4
f �x� � cos x,

c � 0f �x� � e�4x,c � 0f �x� � e2x,

c,
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674 Chapter 9 Infinite Series

Approximating an Integral In Exercises 63–70, use a
power series to approximate the value of the integral with an
error of less than 0.0001. (In Exercises 65 and 67, assume that
the integrand is defined as 1 when )

63.

64.

65.

66.

67.

68.

69.

70.

Area In Exercises 71 and 72, use a power series to 
approximate the area of the region. Use a graphing utility to
verify the result.

71. 72.

Probability In Exercises 73 and 74, approximate the normal
probability with an error of less than 0.0001, where the 
probability is given by

73. 74.

Finding a Taylor Polynomial Using Technology In
Exercises 75–78, use a computer algebra system to find the
fifth-degree Taylor polynomial, centered at for the function.
Graph the function and the polynomial. Use the graph to
determine the largest interval on which the polynomial is a
reasonable approximation of the function.

75.

76.

77.

78. c � 1h�x� � 3�x arctan x,

c � 1g�x� � �x ln x,

c � 0f �x� � sin 
x
2

 ln�1 � x�,

c � 0f �x� � x cos 2x,

c,

P�1 < x < 2�P�0 < x < 1�

a b

f(x) =
2π
1 e−x2/2

x

y

P�a  <  x  <  b� �
1

�2�
 �b

a
 e�x2/ 2 dx.

0.5 1 1.5

0.5

1.0

1.5

x

y

5π
8

x

y

1
4

1
2

3
4

3π
8

π
8

π
4

�1

0.5
 cos�x dx���2

0
 �x cos x dx

�0.2

0
 �1 � x2 dx

�0.3

0.1
 �1 � x3 dx

�1�2

0
 arctan x2 dx

�1�2

0
 
arctan x

x
 dx

�1

0
 cos x2 dx

�1

0
 
sin x

x
 dx

�1�4

0
x ln�x � 1� dx

�1

0
 e�x3

 dx

x � 0.

WRITING ABOUT CONCEPTS
79. Taylor Series State the guidelines for finding a

Taylor series.

80. Binomial Series Define the binomial series. What is
its radius of convergence?

81. Finding a Series Explain how to use the series

to find the series for each function. Do not find the series.

(a) (b) (c) f �x� � xexf �x� � e3xf �x� � e�x

g�x� � ex � �
�

n�0
 
xn

n!

82. HOW DO YOU SEE IT? Match the polynomial
with its graph. The graphs are labeled (i), (ii),
(iii), and (iv). Factor a common factor from each
polynomial and identify the function approximated
by the remaining Taylor polynomial.

(i) (ii)

(iii) (iv)

(a) (b)

(c) (d) y � x2 � x3 � x4y � x � x2 �
x3

2!

y � x �
x3

2!
�

x5

4!
y � x2 �

x4

3!

x

2

4

4
−2

−4

−4

y

x

2

4

2 4
−2

−4

−4

y

x
42−2

−4

−2
−4

y

x

2

4

2 4

−4

−4

y
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9.10 Taylor and Maclaurin Series 675

83. Projectile Motion A projectile fired from the ground 
follows the trajectory given by

where is the initial speed, is the angle of projection, is
the acceleration due to gravity, and is the drag factor caused
by air resistance. Using the power series representation

verify that the trajectory can be rewritten as

85. Investigation Consider the function defined by

(a) Sketch a graph of the function.

(b) Use the alternative form of the definition of the derivative
(Section 2.1) and L’Hôpital’s Rule to show that 
[By continuing this process, it can be shown that 
for ]

(c) Using the result in part (b), find the Maclaurin series for 
Does the series converge to 

86. Investigation

(a) Find the power series centered at 0 for the function

(b) Use a graphing utility to graph and the eighth-degree
Taylor polynomial for 

(c) Complete the table, where

and

(d) Describe the relationship between the graphs of and 
and the results given in the table in part (c).

87. Proof Prove that for any real 

88. Finding a Maclaurin Series Find the Maclaurin series for

and determine its radius of convergence. Use the first four
terms of the series to approximate 

Evaluating a Binomial Coefficient In Exercises 89–92,
evaluate the binomial coefficient using the formula

where is a real number, is a positive integer, and

89. 90.

91. 92.

93. Writing a Power Series Write the power series for
in terms of binomial coefficients.

94. Proof Prove that is irrational. Hint: Assume that
is rational ( and are integers) and consider

95. Using Fibonacci Numbers Show that the Maclaurin
series for the function

is

where is the th Fibonacci number with and
for 

Hint: Write

and multiply each side of this equation by 1 � x � x2.�

x
1 � x � x2 � a0 � a1x � a2 x2 � .  .  .

�
n � 3.Fn � Fn�2 � Fn�1,

F1 � F2 � 1nFn

�
�

n�1
 Fn x n

g�x� �
x

1 � x � x2

e � 1 � 1 �
1
2!

� .  .  . �
1
n!

� .  .  . .�
qpe � p�q

	e

�1 � x�k

�1�3
5 �0.5

4 �
�2

2 �5
3�

�k
0� � 1.

nk

�k
n� �

k�k � 1��k � 2��k � 3� .  .  . �k � n � 1�
n!

ln 3.

 f �x� � ln 
1 � x
1 � x

x.lim
n→�

 
xn

n!
� 0 

P8f

G�x� � �x

0
 P8�t� dt.F�x� � �x

0
  

ln�t2 � 1�
t2  dt

f.P8�x�
f

 f �x� �
ln�x2 � 1�

x2 .

f ?
f.

n > 1.
f �n��0� � 0
f��0� � 0.

 f �x� � �e�1�x2,
0,

     x 
 0
     x � 0.

f

y � �tan �x �
gx2

2v0
2 cos2 

�
kgx3

3v0
3 cos3 

�
k2 gx4

4v0
4 cos4 

� .  .  . .

�1 < x < 1ln�1 � x� � x �
x2

2
�

x3

3
�

x 4

4
� .  .  . ,

k
gv0

y � tan  �
g

kv0 cos � x �
g
k2 ln1 �

kx
v0 cos �

Use the result of Exercise 83 
to determine the 
series for the path of a
projectile launched from
ground level at an angle
of with an 
initial speed of 
feet per second and a 
drag factor of k �

1
16.

v0 � 64
 � 60�,

84. Projectile Motion

x 0.25 0.50 0.75 1.00 1.50 2.00

F�x�

G�x�

PUTNAM EXAM CHALLENGE
96. Assume that and for all on an

interval of length at least 2. Show that on the
interval.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

�f� �x�� 	 2
x�f� �x�� 	 1� f �x�� 	 1
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